

# Regression and its Applications Multiple Linear Regression

Albert C. Yang, M.D., Ph.D.

Institutes of Brain Science/Digital Medicine Center National Yang-Ming University

Apr 9, 2020

accyang@gmail.com

#### Laboratory of Precision Psychiatry



#### Intelligent Healthcare and its Applications

- 1. <u>Introduction to intelligent healthcare</u> <u>Workshop</u> <u>Chest X-Ray DICOM Files</u>
- 2. <u>Clinically Driven Artificial Intelligence Workshop</u> <u>Chest X-Ray DICOM Files</u> <u>Case Presentation 1 Material</u>
- 3. <u>An Overview of Machine Learning Methods</u> <u>Workshop</u>
- 4. <u>Regression and its Applications</u> <u>Workshop</u> <u>Medical Insurance Data</u>

# Generalized Machine Learning Workflow

- Divide data into training and testing subset
- Model training data
- Evaluate trained model in training data
- Use trained model to predict response in testing data
- Evaluate model performance in testing data

#### Dataset



#### https://www.kaggle.com/mirichoi0218/insurance

#### **Medical Insurance Dataset**

|    | А   | В      | С      | D        | E      | F         | G        |
|----|-----|--------|--------|----------|--------|-----------|----------|
| 1  | age | sex    | bmi    | children | smoker | region    | charges  |
| 2  | 19  | female | 27.9   | 0        | yes    | southwest | 16884.92 |
| 3  | 18  | male   | 33.77  | 1        | no     | southeast | 1725.552 |
| 4  | 28  | male   | 33     | 3        | no     | southeast | 4449.462 |
| 5  | 33  | male   | 22.705 | 0        | no     | northwest | 21984.47 |
| 6  | 32  | male   | 28.88  | 0        | no     | northwest | 3866.855 |
| 7  | 31  | female | 25.74  | 0        | no     | southeast | 3756.622 |
| 8  | 46  | female | 33.44  | 1        | no     | southeast | 8240.59  |
| 9  | 37  | female | 27.74  | 3        | no     | northwest | 7281.506 |
| 10 | 37  | male   | 29.83  | 2        | no     | northeast | 6406.411 |
| 11 | 60  | female | 25.84  | 0        | no     | northwest | 28923.14 |
| 12 | 25  | male   | 26.22  | 0        | no     | northeast | 2721.321 |
| 13 | 62  | female | 26.29  | 0        | yes    | southeast | 27808.73 |
| 14 | 23  | male   | 34.4   | 0        | no     | southwest | 1826.843 |
| 15 | 56  | female | 39.82  | 0        | no     | southeast | 11090.72 |
| 16 | 27  | male   | 42.13  | 0        | yes    | southeast | 39611.76 |
| 17 | 19  | male   | 24.6   | 1        | no     | southwest | 1837.237 |
| 18 | 52  | female | 30.78  | 1        | no     | northeast | 10797.34 |
| 19 | 23  | male   | 23.845 | 0        | no     | northeast | 2395.172 |
| 20 | 56  | male   | 40.3   | 0        | no     | southwest | 10602.39 |
| 21 | 30  | male   | 35.3   | 0        | yes    | southwest | 36837.47 |
| 22 | 60  | female | 36.005 | 0        | no     | northeast | 13228.85 |

#### **Code Review**

| record_computation_workshop04.m 🗙 🕇                   |                                                   |  |
|-------------------------------------------------------|---------------------------------------------------|--|
| This file can be opened as a Live Script. For more in | iformation, see <u>Creating Live Scripts</u> .    |  |
| %% Read Data into Matlab                              |                                                   |  |
| <pre>- [num,txt,raw] = xlsread('insurance</pre>       | e.csv');                                          |  |
| - age=num(:,1);                                       |                                                   |  |
| <pre>- insurance=num(:,7);</pre>                      |                                                   |  |
|                                                       |                                                   |  |
| %% Plot relationship between Age and In               | isurance Claims                                   |  |
| plot(age, insurance, '.');                            |                                                   |  |
| - xlabel('age');                                      |                                                   |  |
| ylabel('insurance');                                  |                                                   |  |
|                                                       |                                                   |  |
| %% Fitting simple linear regression mode              | 1                                                 |  |
| - modell 🚃 fitlm(age,insurance)                       |                                                   |  |
|                                                       |                                                   |  |
| %% Visualization of regression results                |                                                   |  |
| <pre>ypred = predict(modell,age);</pre>               |                                                   |  |
|                                                       |                                                   |  |
| plot(age, insurance, '.');                            |                                                   |  |
| - hold on                                             |                                                   |  |
| - plot(age,ypred, 'ro');                              |                                                   |  |
| <pre>xlabel('age');</pre>                             |                                                   |  |
| ylabel('insurance');                                  |                                                   |  |
|                                                       |                                                   |  |
| %% Model evaluation                                   |                                                   |  |
| modell.RMSE;                                          |                                                   |  |
|                                                       |                                                   |  |
| %% Divide data into training and testing              |                                                   |  |
| test_index = zeros(length(insurand                    |                                                   |  |
|                                                       | <pre>nsurance),fix(length(insurance)*0.3));</pre> |  |
| <pre>test_index(test_sample) = 1;</pre>               |                                                   |  |
| <pre>train_index = ~test_index;</pre>                 |                                                   |  |

| train_d                   | ata = data(train_index==1,:);                                                  |
|---------------------------|--------------------------------------------------------------------------------|
| test_da                   | <pre>ta = data(test_index==1,:);</pre>                                         |
| %% Fitti                  | ng training data                                                               |
|                           |                                                                                |
| mode12                    | fitlm(train_data(:,1),train_data(:,2)                                          |
| mode12                    | fitlm(train_data(:,1),train_data(:,2)                                          |
|                           | <pre>fitlm(train_data(:,1),train_data(:,2) lict Response in Testing Data</pre> |
| %% Pred                   |                                                                                |
| %% Pred                   | ict Response in Testing Data                                                   |
| <b>%% Pred</b><br>ypred = | ict Response in Testing Data                                                   |

Continuous variables

bmi = num(:,3);

Ordinal variables

children = num(:,4);

• Binary variables

smoker\_str = txt(2:end,5); smoker = cellfun(@(x)(strcmp(x,'yes')), smoker\_str); sex\_str = txt(2:end,2);

sex = cellfun(@(x)(strcmp(x,'male')), sex\_str);

• Categorical (nominal) variables

| region    | code | e | region1 | region2 | region3 | region4 |
|-----------|------|---|---------|---------|---------|---------|
| southwest |      | 0 | 1       | 0       | 0       | 0       |
| southeast |      | 1 | 0       | 1       | 0       | 0       |
| southeast |      | 1 | 0       | 1       | 0       | 0       |
| northwest |      | 2 | 0       | 0       | 1       | 0       |
| northwest |      | 2 | 0       | 0       | 0       | 0       |
| southeast |      | 1 | 0       | 1       | 0       | 0       |
| southeast |      | 1 | 0       | 1       | 0       | 0       |
| northwest |      | 2 | 0       | 0       | 0       | 0       |
| northeast |      | 3 | 0       | 0       | 0       | 1       |
| northwest |      | 2 | 0       | 0       | 1       | 0       |
| northeast |      | 3 | 0       | 0       | 0       | 1       |
| southeast |      | 1 | 0       | 1       | 0       | 0       |
| southwest |      | 0 | 1       | 0       | 0       | 0       |
| southeast |      | 1 | 0       | 1       | 0       | 0       |
| southeast |      |   | 0       | 1       | 0       | D       |

There is no intrinsic order in categorical variables

• Categorical (nominal) variables

region\_str = txt(2:end,6); sw = cellfun(@(x)(strcmp(x,'southwest')), region\_str); se = cellfun(@(x)(strcmp(x,'southeast')), region\_str); nw = cellfun(@(x)(strcmp(x,'northwest')), region\_str); ne = cellfun(@(x)(strcmp(x,'northeast')), region\_str);

#### Combine All Predictors and Response into a Data Matrix

 data = [age sex bmi children smoker sw se nw ne insurance];

#### Apply Generalized Machine Learning Workflow to New Data

 data = [age sex bmi children smoker sw se nw ne insurance];

### Apply Generalized Machin Learning Workflow to New Data

- data = [age sex bmi children smoker sw se nw ne insurance];
- Divide data into training and testing subset

test\_index = zeros(length(insurance),1); test\_sample = randsample(length(insurance),fix(length(insurance)\*0.3)); test\_index(test\_sample) = 1; train\_index = ~test\_index; train\_data = data(train\_index==1,:); test\_data = data(test\_index==1,:);

#### **Multiple Linear Regression Results**

#### Command Window

New to MATLAB? See resources for Getting Started.

>> model3 = fitlm(train\_data(:,1:8),train\_data(:,10))

model3 =

Linear regression model:

 $y \sim 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8$ 

Estimated Coefficients:

|             | Estimat | e SE   | tStat     | pValue      |
|-------------|---------|--------|-----------|-------------|
|             |         |        |           |             |
| (Intercept) | -11011  | 1190.5 | -9.2488   | 1.5199e-19  |
| <b>x1</b>   | 254.86  | 14.297 | 17.826    | 2.358e-61   |
| ж2          | 101.11  | 401.31 | 0.25194   | 0.80114     |
| ж3          | 305.85  | 34.407 | 8.8894    | 3.1445e-18  |
| x4          | 560.77  | 164.3  | 3.4131    | 0.00067007  |
| x5          | 24672   | 499.26 | 49.417    | 4.0344e-262 |
| x6          | -910.51 | 573.79 | -1.5868   | 0.11289     |
| ж7          | -1005.4 | 572.6  | -1.7558   | 0.079447    |
| x 8         | -43.97  | 572.36 | -0.076821 | 0.93878     |

Number of observations: 937, Error degrees of freedom: 928 Root Mean Squared Error: 6.12e+03 R-squared: 0.756, Adjusted R-Squared: 0.754 F-statistic vs. constant model: 360, p-value = 1.96e-278

# Apply Generalized Machin Learning Workflow to New Data (Improved)

- data = table(age,sex,bmi,children,smoker,region\_str,insurance, 'VariableNames',{'age','sex','bmi','children','smoker','region','insurance'});
- Divide data into training and testing subset

test\_index = zeros(length(insurance),1); test\_sample = randsample(length(insurance),fix(length(insurance)\*0.3)); test\_index(test\_sample) = 1; train\_index = ~test\_index; train\_data = data(train\_index==1,:); test\_data = data(test\_index==1,:);

| • | Fit multiple linear regression to training data                                    | RMSE_test =  |
|---|------------------------------------------------------------------------------------|--------------|
|   | model4 = fitlm(train_data,'ResponseVar','insurance')                               | 5.8911e+03   |
| • | Predict Response in Testing Data                                                   |              |
|   | <pre>ypred = predict(model4,test_data);</pre>                                      | RMSE_train = |
| • | Evaluate the model                                                                 | 6.1424e+03   |
|   | RMSE_test = sqrt(mean((ypred-test_data.insurance).^2))<br>RMSE_train = model4.RMSE |              |

### Multiple Linear Regression Results (Improved Interpretability)

#### Command Window

New to MATLAB? See resources for Getting Started.

Linear regression model:

insurance ~ 1 + age + sex + bmi + children + smoker + region

Estimated Coefficients:

|                  | Estima  | te SE  | tStat     | pValue      |
|------------------|---------|--------|-----------|-------------|
|                  |         |        |           |             |
| (Intercept)      | -13548  | 1226.6 | -11.046   | 9.7922e-27  |
| age              | 257.89  | 14.347 | 17.976    | 3.2052e-62  |
| sex_1            | -191.6  | 403.37 | -0.47498  | 0.63491     |
| bmi              | 362.13  | 34.459 | 10.509    | 1.7469e-24  |
| children         | 425.12  | 167.35 | 2.5402    | 0.01124     |
| smoker_1         | 23391   | 503.51 | 46.456    | 2.2141e-244 |
| region_southeast | -56.098 | 577.61 | -0.097122 | 0.92265     |
| region_northwest | 735.37  | 577.89 | 1.2725    | 0.20351     |
| region_northeast | 1251.3  | 579.77 | 2.1583    | 0.031163    |

Number of observations: 937, Error degrees of freedom: 928 Root Mean Squared Error: 6.14e+03 R-squared: 0.743, Adjusted R-Squared: 0.741 F-statistic vs. constant model: 335, p-value = 1.35e-267